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1 Introduction

In this paper we examine some of the relationships between two important
optimization problems that arise in statistics: robust estimation of multi-
variate location and shape parameters and maximum likelihood assignment
of multivariate data to clusters. We offer a synthesis and generalization of
computational methods reported in the literature. These connections are im-
portant because they can be exploited to support effective robust analysis of
large data sets.
Recognition of the connections between estimators for clusters and outliers

immediately yields one important result that is demonstrated by Rocke and
Woodruff (2002); namely, the ability to detect outliers can be improved a
great deal using a combined perspective from outlier detection and cluster
identification. One can achieve practical breakdown values that approach
the theoretical limits by using algorithms for both problems. It turns out
that many configurations of outliers that are hard to detect using robust
estimators are easily detected using clustering algorithms. Conversely, many
configurations of small clusters that could be considered outliers are easily
distinguished from the main population using robust estimators even though
clustering algorithms fail.
There are assumed to be n data points in Rp and we may refer to them

sometimes as a set of column vectors, {xi} = {xi|i = 1, 2, . . . , n}. We are
concerned here primarily with combinatorial estimators and restrict ourselves
to those that are affine equivariant.

2 Robust Estimation and Clustering

2.1 Robust Estimation and Outlier Detection
The MCD was defined by Rousseeuw as that sample of size h that results in
the lowest covariance determinant. Usually, h is chosen as the “half-sample
size” b(n + p + 1)/2c, which is the choice that maximizes the breakdown
(Rousseeuw and Leroy 1987; Lopuhaä and Rousseeuw 1991). We define the
MCD formally as the solution to the problem of selecting a set H ⊂ N of
size h so as to minimize |W |, where N = {1, 2, . . . , n} and where

W =
X
j∈H

(xj − x̄H)(xj − x̄H)T ,
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and

x̄H = h
−1X

j∈H
xj .

The location and shape estimates are then xH and n−1W .
Rigorous analysis of the theoretical computational complexity of the MCD

by Bernholt and Fischer (2001) implies that the problem must be addressed
using heuristic algorithms that search for a good solution. The difficulty in
constructing such algorithms is that if points that are “outliers” are included
in H , they will distort the estimates of shape and location so as to make it
difficult to detect that they are outlying.
An analysis of difficult forms is provided by Rocke and Woodruff (1996).

An extremely plausible, yet still difficult, form of contamination is referred
to as shift outliers (see Hawkins 1980 page 104). Shift outliers have the same
shape and size as the main population, but a different location.

2.2 Maximum Likelihood Clusters
The problem of finding the maximum likelihood assignment of data points to
clusters is similar, but the literature has developed separately for the most
part. There is a very large literature devoted to clustering when there is a
metric known in advance. However, in order to retain affine equivariance, we
rely on the smaller but growing literature related to using metrics gleaned
from the data itself.
A thorough examination of criteria based on the likelihood is given by

Banfield and Raftery (1993). Their paper proposes a number of criteria that
maximize the likelihood conditional on a clustering, under a number of as-
sumptions about the relative sizes and shapes of the clusters. A popular
method is to solve problem (MINW), (Friedman and Rubin 1967), which
finds the clustering that minimizes the determinant of the pooled covariance
|W | where

W =

gX
i=1

Wi,

Wi =
X
j∈Hi

(xj − x̄H)(xj − x̄H)T ,

and where H1,H2, . . . , Hg is a partition of N . This corresponds to maxi-
mum classification likelihood under the assumption that the data vectors are
multivariate normal with cluster covariances such that Σ1 = · · · = Σg.
An objective that is similar from a computational standpoint is

gX
i=1

hi log

¯̄̄̄
Wi

hi

¯̄̄̄
,

where hi = |Hi|. The minimum corresponds to a maximum classification
likelihood under the assumption of heterogeneous covariance matrices. It was
first given by Scott and Symons (1971) and adjusted by Banfield and Raftery
(1993). Call the problem with this objective function (MIND). In order to
avoid singularities, as a practical matter a parameter hmin > p must be given
for the minimum number of points assigned to each cluster. Difficult forms
are discussed by Coleman and Woodruff (2000).
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3 Neighborhoods

Although most were not written using the terminology of local search, the
proposals in the literature for algorithms for robust estimation and cluster
finding can be cast in that framework. This facilitates synthesis and some
generalization. Local search is defined relative to an evaluation function for
an optimization problem and a neighborhood structure.

3.1 Local Search
We define the generic hard problem to which local search algorithms are
applied as

minτ f(τ ) (P)
Subject to: τ ∈ Ξ

where the set Ξ is intended to summarize the constraints placed on the
decision vector τ . Solution vectors that (do not) satisfy the constraints are
said to be (in)feasible. The constrained optimization literature refers to all
data for the problem–the data that specifies the objective function f(·) and
Ξ–as (P). It is easy to see that the MCD, MINW and MIND estimators can
all be stated in this form.
Neighborhoods are based on moves from one solution to another. All of the

solutions that can be reached from a given solution in one move are said to
be in the neighborhood of the solution. We use the notation N (τ ) to indicate
the set of solutions that are neighbors of a solution τ .
Simplifying things somewhat to ease exposition, we can define Steepest

descent as a general purpose procedure that begins with an initial solution,
τ 0, and selects solutions at iteration k > 0 using the relation

τ k = argmin
τ∈N (τ k−1)

f(τ )

(a tie breaking rule may be needed). The algorithm terminates when there
are no lower objective function value solutions in the neighborhood of the
current solution. Such a solution is referred to as a local minimum. A first-
improving descent is similar but requires more notation and proceeds through
an ordered neighborhood until an improving move is found which is then
immediate made. After a move, the traversal of the neighborhood continues
using the ordering (or some approximation to it). One possibility (for either
steepest descent of first improving) is to repeat the descent many times,
restarted at a random starting point each time the algorithm hits a local
minimum.
Many general purpose optimization algorithms are based on combinatorial

steepest descent (e.g., simulated annealing). An application of some of these
methods to computation of the MVE is given by Woodruff and Rocke (1993).

3.2 Exchange Neighborhoods
For the MCD a sensible neighborhood is one where a point in H is exchanged
with one not currently in H . We refer to this as an exchange or swap neigh-
borhood. For (MINW) and (MIND) the corresponding neighborhood is one
where a point is moved from one group to another. For solutions where the
size constraints are not binding, the neighborhood has (g − 1)n solutions.
There are fewer neighbors of solutions for which one or more of the size
constraints is binding.
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3.3 Constructive Neighborhoods
The swap neighborhoods can be classified as transition neighborhoods that
move from one full solution to another. In contrast, constructive neighbor-
hoods move from a partially specified solution to a more complete solution
and destructive neighborhoods are the opposite. For the problems under con-
sideration here, a constructive neighborhood would correspond to moves that
transform a solution with some but not all data points assigned to one with
one (or more) additional data point(s) assigned; a destructive neighborhood
would correspond to moves that unassign one or more data points. So-called
greedy algorithms can then be cast as steepest descent with a constructive
neighborhood.
A constructive neighborhood for the MCD “surrounds” a set of points, H,

that has between p+1 and h members. A subset of H (typically either empty

or all of H) is required to be included in all neighbors; call this subset H̃.
Finally, a subset of N is eligible for inclusion in any of the neighbors (typically

all of N); call it Ñ . Given a set H, moves to a new set H 0 must be such that
all of the points in H̃ are in H 0 plus one or more points from Ñ . This is
summarized as follows:
p Dimension of the data (given)
n Number of data points (given)
hmin Minimum cluster size (given)
N Index set 1, . . . , n
H Subset of N (currently) estimated to be in the majority population
Ñ Subset of N eligible for inclusion in the H during the next iteration
H̃ Subset of N required to be included in H during the next iteration
Algorithms based on steepest descent must specify the method of construct-

ing an initial solution, an evaluation function, f̂(·), and perhaps also a refresh
period, ψ, that controls how many moves are allowed before corrections are

made for the fact that f̂(·) is based on an approximation to the current state
of the neighborhood. Some of the algorithms in the literature have started
with an initial set as large as a half-sample (e.g., Hawkins 1994), but many
use a starting set of size p+1, and we have conducted simulation studies con-
firming this choice of size for computational reasons. There are three affine
equivariant possibilities reported in the literature for picking a initial sets H
to begin the descent process.

— Select p+ 1 points at random (rand).
— Select p+ 1 points that are “good” based on a heuristic (heur).
— Select the p + 1 points that have lowest Mahalanobis distance from the
result of the last full solution constructed (walk).

Clearly, use of the last choice results in an iterative algorithm that can
be terminated either after some number of constructions, or when it reaches
a fixed point. Refer to such an iterative algorithm as a walking algorithm.
Note that K-means algorithms are generally (non-affine-equivariant) walking
algorithms using this convention. Such algorithms are common in clustering,
but apparently were first used in calculating the MCD by Hawkins (1999)
and Rousseeuw and Van Driessen (1999) independently. A walking algorithm
must be started using either rand or heur.
For the estimators of interest to us, there are two move evaluation function

commonly in use. One is based on Mahalanobis distances from the mean
of points in H using the covariance matrix of points in H as the metric;
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Algorithm f̂(·) H̃ ψ Start/Restart Walking?
Fast-MCD mahal ∅ ∞ heur Yes
Rousseeuw 1999
Forward update H 1 heur No
Atkinson 1994
Improved FSA update ∅ ∞ rand Yes
Hawkins 1999
Hadi update ∅ 1 heur No
Hadi 1992
Multout update H 1 heur No
Rocke and Woodruff 1996

Table 1. Summary of Affine Equivariant Constructive Neighborhoods for
MVE/MCD Algorithms Reported in the Literature as cast in a Local Search Frame-
work

i.e., select the point(s) i ∈ Ñ that minimize(s) d2SH (xi, x̄H) where d
2
SH

is the
Mahalanobis distance under covariance matrix SH , and x̄H is the mean of the
points in H. Call this evaluation method mahal. We indicate that multiple
points might be selected, because if the refresh period is infinite, then one
selects the h or h− p− 1 (depending on the makeup of H̃) points that have
lowest distance and all of the moves can be made at once. If the refresh period
is one, then after each point was added, the values of x̄H and SH are updated.
An alternative to mahal is to use update formulas to predict the effect of
a move. The refresh period specifies how often the mean and covariance are
recomputed from the current set H . Call this method update.
Table 1 gives a summary of constructive neighborhoods that have been

reported in the literature for the MCD (and/or the MVE). In all cases,

Ñ = N \ H̃. Of course, this table provides only a summary of the construc-
tive neighborhood used and not a complete description of the algorithms.
The start-restart heuristic used by Fast-MCD is as follows: do a large num-
ber of random starts each followed by walking that is terminated after two
constructive descents; the best ten results are then pursued with a convergent
walking algorithm. The heuristic reported for use with Forward is to select
the p + 1 points closest to the mean of all of the data under the metric for
the data. Hadi suggest the use of a non-affine equivariant starting heuristic,
but his algorithm is otherwise affine equivariant. Multout uses the result of
a lengthy search based on swap neighborhoods to find a starting point for a
constructive descent that is very similar to Forward. Many of the methods
are being updated so that this table represents only the state of affairs at the
time of this writing. Our main goal is to demonstrate that the local search
framework is very useful as a means of synthesizing the evolving methods.
This notation generalizes to the clustering problems as shown in Rocke and
Woodruff (2002).

4 Conclusions

In this paper we have drawn on concepts from local search to demonstrate
strong connections between algorithms for two important problems in statis-
tics: robust estimation of multivariate location and shape parameters and
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maximum likelihood assignment of multivariate data to clusters. We pro-
vided a synthesis and generalization of computational methods reported in
the literature. These connections are important because they can be exploited
to support effective robust analysis of large data sets.
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